Volume of Revolution Via Washers

Problem: By integrating with respect to the variable y, find the volume of the solid of revolution formed by rotating the region bounded by y=0, x=4 and $y=\sqrt{x}$ about the line x=6.

Volume of Revolution Via Washers

Problem: By integrating with respect to the variable y, find the volume of the solid of revolution formed by rotating the region bounded by y=0, x=4 and $y=\sqrt{x}$ about the line x=6.

$$\Delta V = \pi x^{2} \Delta y$$

$$dV = \pi x^{2} dy$$

$$y = \sqrt{2} \Rightarrow x = y^{2}$$

$$\Rightarrow dV = \pi y^{4} dy$$

$$V = \int_{0}^{2} \pi (6-\pi)^{2} - \pi (2)^{2} dy$$

$$= \pi \int_{0}^{2} (6-y^{2})^{2} - 4 dy$$

$$= \pi \int_{0}^{2} y^{4} - 12y^{2} + 32 dy$$

$$= \pi \left(\frac{y^{5}}{5} - \frac{12y^{3}}{3} + 32y \right) \Big|_{0}^{2}$$

$$= \pi \left(\frac{32}{5} - 4 \cdot 8 + 32 \cdot 2 \right)$$

$$= \pi \left(\frac{2^{5} - 5 \cdot 2^{5} + 10 \cdot 2^{5}}{5} \right)$$

$$= \frac{192}{5} \pi$$